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An ergodic theorem for intermittency of piecewise linear 
iterated maps 
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Sektion Mathematik, Friedrich-Schiller-Universitat Jena, DDR-6900, Jena, 
German Democratic Republic 

Received 17 March 1986 

Abstract. Intermittency behaviour occurs and can be exactly calculated for iterated asym- 
metric tent maps. A typical trajectory exhibits long regular phases with monotonic growth 
(according to a power law) which are interrupted by short irregular bursts at apparently 
random times. The lengths of the laminar phases in a long trajectory turn out to be 
geometrically distributed and to be independent. They are governed by their own ergodic 
theorem. The results can be applied to a larger class of one-hump maps. 

1. Introduction 

Intermittency is a well known phenomenon in data obtained experimentally and in 
numerical simulations of dynamical systems. Long phases of regular behaviour are 
interrupted by short irregular bursts at seemingly random times. The question arises 
of how to describe the randomness of the interruptions from a probabilistic point of 
view although they originate in pure deterministic dynamics. In other words, if the 
sequence of the lengths of the laminar phases is given, how can we characterise this 
apparently random sequence of natural numbers? 

For iterated maps of an interval into itself, x,+~ = f ( x , ) ,  the occurrence of intermit- 
tency can be understood by the fact that the function f ( x )  comes very near to the 
straight line y = x in some subinterval. Therefore the motion in this ‘tube’ is laminar 
for a long time, whereas outside larger jumps and reinjection occur. Pomeau and 
Manneville (1980) and Hirsch et a1 (1982) analysed this phenomenon in connection 
with tangent bifurcations and estimated the mean duration of the laminar phase. 
However, assumptions about the distribution of the initial values of the laminar phases 
must be made, because the latter are not exactly known in general. Moreover, correla- 
tions of the lengths of different phases cannot be calculated. 

In the following we want to introduce a simple model which allows an exactly 
calculable solution. 

2. The model 

Let us consider iterated maps 

% + I  =f(x,) n=0 ,1 ,2 ,  . . .  
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of the interval [0, 11 onto itself, where f is taken to be a continuous piecewise linear 
function with one maximum (figure 1): 

O S X S  l/a, a > 1 
[ a / ( a  - 1)](1 - x )  1/a  < x s  1, a > 1. f ( x )  = { ax 

For the sake of brevity we use 

and S = [O,l/a], S ,  = ( l / a ,  I]. 
The function f is nowhere invertible and possesses no stable orbit of a finite period 

(especially no stable fixed point), so it is a good candidate for chaotic behaviour. 
Intermittency occurs for values of a slightly greater than one. A typical trajectory 
(xo, xl, x2, .  . .) shows long phases of monotonic growth according to a power law 
( -a“) .  The duration of a laminar phase is longer, the nearer to the origin this phase 
begins. This behaviour is interrupted by short turbulent oscillations around the unstable 
fixed point and jumps to smaller values of x (figure 2 ) .  

By the prescription 

o s x x c / a  K l / a  < x s  1 
s(x) = (4) 

l l a  

Figure 1. The piecewise linear function f ( x ) .  

Figure 2. A typical trajectory xo, x,, x2 , .  . . ( a  = 1.1, xo =0.12). The points of the laminar 
phases are connected by a smooth curve. 
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we can construct a corresponding symbolic dynamics, its trajectories being sequences 
of 0 and T (0 = 'quiet', 'laminar', T = 'turbulent'). A typical trajectory looks like 

0...07T...T00...07T...T00...0T... ++-+ 
A I  I ,  A 2  I ,  . . .  

(cf figure 2) where we have denoted the number of successive 0 by I , ,  1 2 , .  . . , and the 
number of successive T by A,, A 2 , .  . . . 

Definition 1 .  The sequence of successive 0 (T) after the kth change TO (OT) is called 
the kth 0 phase (T phase) and the number Ik ( A k )  of 0 (T) occurring is called the 
length of the kth 0 phase (T phase). 

Definition 2. A value x, (within a given trajectory) is called the starting point for a 0 
phase if S ( X , - ~ )  = T, s(x,) = 0 (and similarly for a T phase). 

In the following we want to consider mainly the behaviour of the lengths of the 
('laminar') 0 phases. 

Lemma 1 .  ( a )  If x, is the starting point for a 0 phase, then it holds that 

x,-1 E [l  - (a  - l)/a2, 13 x, E [O, l / f f  I. (5) 

( b )  If x, = x is the starting point for a 0 phase, then the corresponding length 1, 
will be a function I ( x )  of the starting point, 

(where int ( ) denotes the integer part and lA  denotes the indicator function of a 
set A).  

R o o t  By definition, we have x, E S, x,-, = f i ' ( x , ) ~ f i ' ( S )  = [l  - (a  - l ) / a 2 ,  11 (see 
figure 3) and l ( x )  = k corresponds to 

In x 1 1 
In a a f k - ' ( x )  l / a  < f k ( X ) + +  k s  --< k +  1 ++(yk+l< X s k .  

S f;' 15) 

Figure 3. The points in / ; ' ( S )  are precursors of starting points for 0 phases 
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3. Ergodicity of the dynamics 

The following properties of our dynamics (1) and (2) are well known and will be cited 
here for later use. 
lleorem 1 .  ( a )  The transformation f possesses exactly one absolutely continuous 
invariant (probability) measure, namely the uniform distribution on [0, 11. 

( b )  The dynamics is ergodic with respect to this invariant measure. 
Proof: The existence of an invariant measure P = P of-' with density p(x)  is ensured 
by a theorem of Lasota and Yorke (1973), because f is piecewise differentiable with 
inflf'(x)l> 1, as the uniqueness of the one hump off  is sufficient (see, for example, 
Kowalski 1976). 

The density p(x)  of the invariant measure P must satisfy 

which gives p(x)  = lro,l l(x) directly. 
Remark. Other invariant measures are of the type P = (1/ n) Zy=l ax,, where 
(xl ,  x2 , .  . . , x,) is an (unstable!) orbit of period n, but all these measures are supported 
by sets of Lebesgue-measure zero. 
Corollary 1. Let F : [ O ,  11- R' be a measurable function. Then we have 

with p ( x )  = 1 

for almost all xo. 
Remark This is the famous ergodic theorem stating the equality of the time average 
P over a trajectory (starting with xo) 

and the ensemble average E p F  of a function F ( t ) ,  where 5 is a random variable 
distributed according to the probability measure P with density p ( x ) ,  

E,W = Jol ~ ( x )  . dx 

for almost all trajectories, i.e. we have 

for almost all xo. 

: [0,1] + RI be a measurable function. Then we have 
Special cases of interest are F (x )  = x, F (x )  = (x - 2 )  ( fk (x )  - 2 )  and F (x )  = lA(x) ,  

with p(x)  = 1 

for almost all x,. 

Remark. This is the famous ergodic theorem stating the equality of the time average 
over a trajectory (starting with xo) 

F : =  lim F N  a being a Bore1 subset of [0,1]. 
N-OZ 

Assertion. For the asymmetric tent map ( l ) ,  (2) we have 
(x -2)(fk(x)  - 2 )  =&[(2- CY)/alk k = 0 ,  1,2 ,.... (9) 2 = L  
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F'roof: The first part is obvious, as P is the uniform distribution on [0, 11, and the 
second part follows by partial integration and complete induction. The essential step 
is tbe calculation (p(x) 3 1 !) 

xfk(x) = lo' xfk(x) dx 

which gives directly 

2 - a  
Xfk(X) - R 2  = ( --)[xf*-'(x) - 2'1 k = l , 2 ,  . . . .  

This result was numerically found by Grossmann (1983). 

4. Ergodicity of the sequence of lengths (of the 0 phases) 

The results in this section are formulated for somewhat general functions f satisfying 
the following properties (which are by no means minimal): 

(i) f(x) =fL(x) strictly increasing in S = [0, x,], 
(ii) f(x) = fR(x) strictly decreasing in ST = (x,, 13, 

(iv) fLc C'[O,  XO],fRE C'[xo, 11 with If'(x)l> 1 in [O, 13. 
If in analogy to (4) we put 

(iii) fL(0) =fR(1) =o, fL(X0) 'fR(xO) = 1, 

X € S  {; X E S 7  
s(x) = (4') 

then S =  [0, 11 is the set of possible starting points for 0 phases. 

Lemma 2. Let x(x) = lfil(sl(x) f(x). Then we have x(x,-]) = x, if x, is a starting 
point for a 0 phase, and 0 otherwise. Let p ( x )  be the density of the measure P being 
invariant under f: Then, under the assumptions (i)-(iv) above, we have 

with 
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Pro05 x,  is a starting point if x ,  = f ( x , - , )  E S, x = x , - ~  ~ f i ' ( S ) .  Hence in the invariant 
case the 'precursors' x of starting points are distributed according to P ~ , ; I ( ~ )  and 
consequently the starting points y =fR( x )  themselves are distributed according to 
P, = Plfnl (s )  Of; ' ,  i.e. they have the density 

with the normalisation factor given by (10). Integration over A and the ergodicity of 
the process (8) give the desired result. Let n (  N )  = n ( N ( x o ) )  be the total number of 
0 phases within a trajectory ( x o ,  x l , .  . . , x N ) ,  where for convenience N is chosen to 
finish a 0 phase. Then n (  N )  is the number of changes TO, and so we have 

Lemma 3. We have 

Proof: f is ergodic with respect to p ( x ) ,  so we have 

which together with y = f R ( x )  proves the lemma. 

Now the following problem arises. Suppose 4 to be a real function defined on the 
natural numbers and let I , ,  1 2 , .  . . , I n ( N ) ,  . . . , b e  the sequence of lengths of 0 phases. 
Let us now consider the empirical mean value 

Theorem 2. Let 4: N+ RI be an arbitrary function. Then, under the assumptions 
(i)-(iv) o n f ,  we have for almost all xo 

n - n  lim m" = i' ~ [ ~ ( Y ) I P , ( Y )  dy. ( 1 5 )  

ProoJ By definition 

so we have 

Because of the ergodicity o f f  the second limit is equal to the ensemble average 

Jol 1 ,;I( s )  ( x) 4 [ U( x IP (XI dx. 

By substituting y =fR(x), lemma 3 and the invariant density of starting points p , ( x )  
from lemma 2 ,  we obtain the theorem. 
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Corollary 2. We have (for almost all xo) 
f l  

and in particular 

Pro05 The result follows immediately from theorem 2 if 4 is taken to be + ( I )  = 1,,,( 1 )  
or 4(1 )  = l k  (especially 4(I) = I ) .  

Remark. The sequence ( 1 1 ,  1 2 , .  . . , . . .) of lengths is therefore ergodic in the 
following sense. 

calculated from a long trajectory as n +CO tends 
to the expectation value El of a random variable I( q), 7 being absolutely continuously 
distributed with density ps(y). 

(ii) The relative frequency of a 0 phase of fixed length m calculated from a long 
trajectory as n -+ CO tends to the probability of the discrete random variable I (  q )  taking 
the value m. 

The next problem is to investigate the correlations of consecutive (or more distant) 
lengths of 0 phases. Let T ( 1 k )  = / k + l  be the shift of the counting of the 0 phases for 
one step. Then the value 

(i)  The empirical mean length 

(or better its centred expression) is characteristic for the interdependence of consecutive 
lengths. 

Lemma 4. We have 

Pro05 Let x, be the last symbol in a T phase and f (x t )  the value corresponding to the 
first 0 in the kth 0 phase with length = l(f(xl)) .  Then f '*(x,)  creates the last symbol 
0 and ff4+'(x,)  is the starting point for a T phase of length A k + l  ( & + I  being a function 
A ( y )  of the new starting point y =f'k+l(x,)  + 1 and therefore a function of x,). Hence 
f'k+*k+'(x,) is the starting point for the ( k +  1)th 0 phase. 

Theorem 3. We have for almost all xo 
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Proo$ 
Tol i s  
the ( k  

The result is a consequence of theorem 2, if one uses lemma 4 and the fact that 
a function of the (first) starting point x. (Here T 0 1 denotes the length lk+l of 
+ 1)th 0 phase as a function of the starting point x of the kth 0 phase.) 

Remark Theorem 3 can be further generalised in the sense that for an arbitrary function 
J, : Nr+l -+ RI it holds that 

for almost all xo 

5. Results for the piecewise linear map 

Throughout this section f is assumed to be the piecewise linear function (2) .  

Lemma 5. The invariant distribution P, of the starting points is absolutely continuous 
with the density 

Proof: We have p ( x )  = 1 and Ifk(fi’(y))I = ./(a - 1 )  independent of y,  so by lemma 
2 and ( 1 1 )  P, turns out to be the uniform distribution restricted to [0, l / a ] .  

for the piecewise linear function ( 2 ) .  To prove this theorem we use the function A ( x )  
giving the length of a T phase starting with the point x. 

Lemma 6. It holds that 

with 

[VI ,  11 m = l  

m =2,4 ,6 , .  . . ; y ,  =fRm(yo) ,yO= l / a  

m=3,5 ,7  ,.... 
( 2 5 )  
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Proof. Let x be a starting point for a T phase. Then we have A(x) = m if and only if 
x E I ,  = { X ~ X  E S,,fR(x) E S T ,  . . . ,~:-I(X) E S r , f g ( X )  E S }  

(figure 4), because we have 

f k R ( I m ) = l m - k C S r  k = 0 , 1 ,  . . . , m - 1 

and A(x,) = m if x ,  E I , ,  x,-~ E S only for these intervals. 

Proof of theorem 4. To simplify the notation we define 
cc 

L ( x ) : =  F ( a " " ) x )  with F(x):= c f i ( x ) l , m ( x ) .  
m = l  

Then it follows that 
in ~ ( ~ i n t ( - l n  x/ln (I) 

( T 0 I)(x) = I[ L(x)] = int 
In a 

I 

./Q' # I  

: '  I 8  
8 1  I ,  

, I  

,' I : :  1 
I , I  1 

'0 '2'3 x1 

+-- ! --+ 
0 

12 1 3  11 
Figure 4. Points starting in I , ,  I,, I , ,  . . . ,generate T phases of length 1 , 2 , 3 , .  . .. 
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= a  f q/o"a $[ko,l(z), . . . , (  loL'-')(z)]dz. 
b=l ff 

Iterating these substitutions, we finally obtain 

Corollary 3. ( i )  The relative frequency of the lengths with value m as n + CO (for almost 
all xo) tends to a geometric distribution with 

P s { 1 ( 7 ) = m ) = ( a - 1 ) / a m  m = 1,2, . . . . (27) 
-n 2 "  (ii) The empirical mean length f" and the empirical variance (8")' = ( I  - I ) as 

n + 00 (for almost all xo) tend to the values 

and in particular for the relative empirical dispersion we have 

8" J D l  1 
lim for almost all xo. 
n-m f - El -Ja 

(iii) For almost all xo we have 

or, by ergodicity, 

ProoJ: (i) The statement follows immediately from theorem 4, choosing CC, = l,,,. 

account that m = 0 is forbidden by definition). 
( i i )  The results are well known facts on geometrical distributions (taking into 

(iii) For 

(i)  yields directly 

Remark. Part (iii) of the corollary implies that the conditional relative frequency of 
lengths following a length of value m in a long trajectory is the same as the unconditional 
frequency and all correlations vanish identically, 

( 1 - r) ( T m  0 1 - r) = c O V p s  ( 1( r ]  ), ( T m  0 1 )  ( r] ) ) = 0 m = 1 ,  2 , .  . .. 
(30) 
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Figure 5. Relative frequency of the lengths of 0 phases (circles) compared with the exact 
geometrical distribution (straight lines) for a = 1.1 and 10000 lengths. 

Table 1. Comparison of empirical moments and asymptotically exact values calculated by 
the invariant distribution for different values of a and 10000 0 phases. (The subsequent 
rows list mean value, dispersion, relative dispersion and correlation of subsequent states.) 

( I  - T ) ( T o  I -  f) c(i, I )  

10000 1.2 6.0 6 5.5 5.5 0.92 0.91 0.0 0 
10000 1.1 10.9 11 10.2 10.5 0.94 0.95 0.3 0 
10000 1.08 13.3 13.5 13.1 13.0 0.99 0.96 3.0 0 
10000 1.06 17.8 17.7 17.6 17.2 0.99 0.97 -2.5 0 
10000 1.04 26.2 26 25.5 25.5 0.97 0.98 -3.8 0 

6. Numerical results 

The dynamics (1) and ( 2 )  can be easily simulated on a small pocket calculator. In 
figure 5 the empirical relative frequencies of the lengths of 0 phases are shown after 
realising 10 000 lengths (i.e. n( N )  = 10 000, N = 10 000 f) for a value a = 1, 1. That 
gives a good agreement with the corresponding probabilities (27) of a geometrical 
distribution. 

Table 1 shows the comparison of empirical means (n( N )  = 10 000) (iteration with 
14 digits) and asymptotically exact values which again agree within the expected 
accuracy. 

For visualising possible correlations we have plotted & + I  against / k .  The result is 
shown in figure 6 .  The cloud of points underlines that there is no obvious functional 
dependence /k+E = g ( / k )  on the number 1, (but only a dependence in the form / k + l ( x )  = 
( T O  / k ) ( x ) ) ,  in particular, a fixed value /k = m may be followed by all possible values 
of / k + l .  This is a consequence of the fact that consecutive lengths are totally uncorre- 
lated. 

7. Summary and interpretation 

The main result for the asymmetric tent map is formulated in corollary 3. Obviously, 
our model system described by the dynamics (1) and (2) shows an intermittent behaviour 
for a = 1 + E, E << 1, where at apparently random times long phases of regular growth 
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( k  

Figure 6. Empirical correlations of consecutive lengths (plot of / , + I  against / k  for k =  
1,. . . , 150, a = 1.1). 

(-a ")  are interrupted by (monotonic or oscillating) irregular jumps. Correspondingly, 
a symbolic dynamics shows long phases of 0 apparently randomly interrupted by short 
T phases. 

If one realises numerically a sufficiently long trajectory and analyses the lengths 
of the 0 phases then almost certainly (with respect to the initial point) the following 
behaviour occurs. 

(i) The relative frequencies of the possible lengths asymptotically become geometri- 
cally distributed. If a trajectory is stopped at an arbitrary time n >> 1, then the next 
length appears as a geometrically distributed random variable. 

(ii) Consecutive lengths are independent in the sense that the knowledge of the 
value lk does not allow any prediction of &+, (possessing more information than that 
given in (i)) .  

(iii) The mean length becomes larger and larger as a i l ,  but the relative dispersion 
remains finite, so the randomness is also preserved with reference to the absolute length. 

The lengths of the turbulent phases can, of course, be analysed in the same way, 
and they turn out to be geometrically distributed as well: 

E A ( 6 )  = a DA ( 6) = ( - 1 ) 

where 6 is a random variable distributed according to P, with density p v ( x ) =  
[a/( a - 1)]lS,(x) being the density of starting points for a T phase. 

To prove this we must use from lemma 6 that A(x) = m if and only if x E Z,, where 
subsequent intervals I o ,  I , ,  . . . , are scaled down by a factor l/a. 

The assertions on the ergodic properties of the sequence of lengths { f k ,  h k } F = ,  are 
applicable to the more general functions f satisfying the assumptions at the start of 
0 4, but the analytical calculation may be more complicated. 

A comparison of our results with those obtained in the literature for non-linear 
maps seems to be not directly possible, but we believe that intermittency of type 111 
(Schuster 1984) occurs. Writing a = l + & ,  E<< 1, we observe from (27) and (28) the 
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power law for the mean length T -  E - ~  and the exponential decay for the probabilities 

pm := P S { 1 ( 7 )  = m}-eC" as ~ $ 1  

which should still hold for general type-I11 systems. (In Schuster (1984) type I11 is 
introduced by x,+~ = -( 1 + E ) X ,  - u x i ,  hence for E << 1 every second iterate satisfies 
x,+~ = (1 + ~ E ) x ,  + . . . and causes an additional factor of two for the probabilities p,,,.) 
In our opinion the model clearly shows how macroscopic randomness can arise from 
microscopically deterministic dynamics. 
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